Max Planck Institute of Microstructure Physics

Max Planck Institute of Microstructure Physics

The electronics of the future could operate with light instead of electricity – or a combination of the two. As yet, no ideal light sources are available for this, however, nor are fibre optics fully developed. The development of such materials is one of the challenges that the scientists at the Max Planck Institute for Microstructure Physics in Halle have taken on. They investigate how the microstructure and nanostructure of metallic compounds affect their physical properties, for example how they behave as fibre optics or their magnetic characteristics. Their research concentrates on materials in low dimensions, for instance in a two-dimensional thin layer, a virtually one-dimensional nanowire or a minute heap of atoms, which physicists call a quantum dot and which, in some respects, resembles a single atom.

Contact

Weinberg 2
06120 Halle (Saale)
Phone: +49 345 5582-50

PhD opportunities

This institute has an International Max Planck Research School (IMPRS):

IMPRS for Science and Technology of Nano-Systems

In addition, there is the possibility of individual doctoral research. Please contact the directors or research group leaders at the Institute.

Department Synthetic Materials and Functional Devices

more

Department Nano-Systems from ions, spins and electrons

more

Department Nanophotonics, Integration, and Neural Technology

more

Department Nanomagnetism, Experimental Department I

more
The Max Planck Synergy Grantees 2024 (from top left to bottom right): Benedetta Ciardi, Max Planck Institute for Astrophysics; Torsten Enßlin, Max Planck Institute for Astrophysics; Alessandra Buonanno, Max Planck Institute for Gravitational Physics; Xinliang Feng, Max Planck Institute for Microstructure Physics; Axel Kleinschmidt, Max Planck Institute for Gravitational Physics; Joël Ouaknine, Max Planck Institute for Software Systems; Florian Luca, Max Planck Institute for Software Systems; Angel Rubio, Max Planck Institute for the Structure and Dynamics of Matter; Petra Schwille, Max Planck Institute of Biochemistry; Alexander Herbig, Max Planck Institute for Evolutionary Anthropology; Herwig Baier, Max Planck Institute for Biological Intelligence; Jennifer Li and Drew Robson, Max Planck Institute for Biological Cybernetics; Aneta Koseska, Max Planck Institute for Neurobiology of Behavior – CAESAR; Alec Wodtke, Max Planck Institute for Multidisciplinary Sciences.

With twelve Synergy Grants, the Max Planck Society claims top spot in the ERC ranking

more

A Technical Review in Nature Reviews Physics

more

Andriy Styervoyedov explains how a new German-Ukrainian Core of Excellence aims to help rebuild Ukrainian research

more

The Max Planck Institute of Microstructure Physics and V.N. Karasin University cooperate in spintronics research

more

Stuart Parkin honoured as Clarivate Citation Laureate

more
Show more

This physicist changed our world: It was Stuart Parkin’s developments in spintronics that first made Facebook and Google possible, as well as many other computer applications without which our everyday lives are now barely conceivable. Parkin has been Director at the Max Planck Institute of Microstructure Physics in Halle for one year now. For his colleagues there, his energy is impressive and challenging in equal measure.

Computers today serve as a jukebox, movie archive and photo album, and must thus provide fast access to ever-larger amounts of data. Scientists at the Max Planck Institute for Intelligent Systems in Stuttgart and the Halle-based Max Planck Institute of Microstructure Physics are paving the way for magnetic storage materials that make this possible, cleverly taking advantage of the unique laws of the nanoworld.

PhD Position (m/f/d) | Chiral Quantum Materials - ERC project ChiralTopMat

Max Planck Institute of Microstructure Physics, Halle (Saale) October 15, 2024

Postdoc Position | Chiral Quantum Materials research - ERC project ChiralTopMat

Max Planck Institute of Microstructure Physics, Halle (Saale) October 15, 2024

Postdoc Position (m/f/d) | Material development for chiral organic semiconductors

Max Planck Institute of Microstructure Physics, Halle (Saale) September 25, 2024

Postdoc Position (m/f/d) | Device development of functional organic semiconductor optoelectronics

Max Planck Institute of Microstructure Physics, Halle (Saale) September 25, 2024

Revolutionizing nanoelectronics and spintronics: the impact of precision graphene nanoribbons 

2023 Ma, Ji; Feng, Xinliang

Material Sciences Particle Physics Plasma Physics Quantum Physics Solid State Research

Precision graphene nanoribbons (GNRs) represent promising candidates for next-generation nanoelectronics and spintronics due to their intriguing and tailorable electronic properties. The Department of Synthetic Materials and Functional Devices at the MPI of Microstructure Physics engages in developing synthetic strategies to precisely engineer GNRs with specific structural topologies. This approach aims to fine-tune the bandgaps, charge carrier mobilities, and topological states of GNRs, facilitating their seamless integration into a myriad of nanoelectronics and spintronics applications.

more

Visible spectrum photonic integrated circuits for the brain

2022 Poon, Joyce

Material Sciences Particle Physics Plasma Physics Quantum Physics Solid State Research

The Department of Nanophotonics, Integration, and Neural Technology at the MPI of Microstructure Physics is developing wafer-scale photonic circuit technologies to miniaturize and increase the integration density of optical systems. Such microchip technologies can transform numerous applications, such as displays, quantum information, and sensing.  The Department is using these capabilities to create a set of multifunctional implantable chips that interface with the brain to advance neuroscience. The systems are being deployed to neuroscience labs for exploratory and health research.

more

Magnetism in two dimensions goes easy-plane

2021 Bedoya-Pinto, Amilcar; Parkin, Stuart S. P. 

Material Sciences Solid State Research

The physics of low-dimensional systems has been a topic of great interest. Recently, two-dimensional (2D) materials exhibiting long-range magnetic order have been in the spotlight. Using state-of-the art molecular beam epitaxy, we constructed the first large-area 2D ferromagnet - a single CrCl3 monolayer on Graphene-on-Silicon-Carbide substrate - which exhibits an easy-plane magnetic anisotropy (2D-XY universality class). This discovery offers a suitable platform to observe exotic phenomena with application potential, such as 2D spin superfluidity and topologically protected magnetic textures.

more

The emergence of ferroic orders in flatland

2020 Sessi, Paolo; Bedoya-Pinto, Amilcar; Parkin, Stuart

Material Sciences Particle Physics Plasma Physics Quantum Physics Solid State Research

Two-dimensional (2D) ferroics displaying magnetic, ferroelectric, or ferroelastic order have recently been discovered. These materials are attracting tremendous interest in the research community both because of the novel physics they host, as well as their potential for next generation nanoelectronics. Our institute explores, synthesizes and characterizes novel 2D ferroics with the aim of using them in innovative energy-efficient devices.

more

The growing zoology of skyrmions!

2019 Ma, Tianping; Saha, Rana; Parkin, Stuart

Particle Physics

Spintronics is a field of research that focuses on the fundamental physics and applications of spin-based phenomena. To date spintronics has played a key role in the development of recording heads that are used in magnetic disk drives and in a high-performance, solid-state, non-volatile magnetic random access memory. A third spintronics technology, the magnetic Racetrack memory, has the potential to supplant magnetic disk drives: this article discusses the discovery of several novel magnetic nano-objects, so-called “skyrmions” that could encode the data within Racetrack Memory.

more
Go to Editor View