3D-Druck mit Ultraschall
Forschende setzen Partikel mit Hilfe von Ultraschall zu dreidimensionalen Objekten zusammen
Wissenschaftler und Wissenschaftlerinnen vom Max-Planck-Institut für medizinische Forschung und der Universität Heidelberg haben eine neue Technologie entwickelt, um Materie in 3D zu drucken. Sie nutzen dabei Schallwellen, um Druckfelder zu erzeugen. Innerhalb dieser Schallfelder können zum Beispiel Feststoffpartikel oder biologische Zellen zu ausgewählten Formen zusammengesetzt werden. Die Erkenntnisse ebnen den Weg für neuartige 3D-Zellkulturtechniken mit hoher Relevanz für biomedizinische Techniken.
Der 3D-Druck ermöglicht die Herstellung komplexer Teile aus verschiedenen Materialien - sogar biologischen. Herkömmlicher 3D-Druck kann ein langsamer Prozess sein, bei dem Objekte schichtweise aufgebaut werden. Forscherinnen und Forscherin Heidelberg und Tübingen zeigen nun, wie man aus kleineren Bausteinen in nur einem Schritt ein 3D-Objekt formt. „Mit zielgerichtetem und geformten Ultraschall konnten wir kleinste Partikel in einem einzigen Schritt zu einem dreidimensionalen Objekt zusammenfügen“, sagt Kai Melde, Postdoc in der Gruppe und Erstautor der Studie. „Das kann für das sogenannte Bioprinting sehr nützlich sein. Die dort verwendeten Zellen sind besonders empfindlich gegenüber Umwelteinflüssen und Ultraschall ist eine sanfte Methode“, ergänzt Peer Fischer, Professor an der Universität Heidelberg.
Schallwellen üben Kräfte auf Materie aus – eine Tatsache, die jeder Konzertbesucher kennt, der die Druckwellen eines Lautsprechers spührt. Mit hochfrequentem Ultraschall, der für das menschliche Ohr nicht hörbar ist, können die Wellenlängen unter einen Millimeter in den mikroskopischen Bereich verschoben werden. So können Forschende sehr kleine Bausteine wie biologische Zellen manipulieren.
In früheren Studien haben Peer Fischer und seine Kolleginnen und Kollegen demonstriert, wie Ultraschall mithilfe von akustischen Hologrammen – 3D-gedruckten Platten, die ein bestimmtes Schallfeld kodieren sollen – erzeugt werden kann. Sie demonstrierten, dass diese Schallfelder verwendet werden können, um Materialien zu zweidimensionalen Mustern zusammenzusetzen.
Schallfeld fängt Partikel ein
Mit ihrer neuen Studie konnte das Team die Idee noch einen Schritt weiterbringen. In den Schallfeldern fangen sie frei im Wasser schwebende Partikel und Zellen ein und setzen sie zu dreidimensionalen Formen zusammen. Darüber hinaus funktioniert die neue Methode mit einer Vielzahl von Materialien, darunter Glas- oder Hydrogelperlen und biologische Zellen. Dazu erklärt Erstautor Kai Melde: „Die entscheidende Idee war, mehrere akustische Hologramme zusammen zu verwenden und so ein Schallfeld zu bilden, das die Partikel einfangen kann.“ Heiner Kremer, der den Algorithmus zur Optimierung der Hologrammfelder geschrieben hat, ergänzt: „Die Digitalisierung eines ganzen 3D-Objekts in Ultraschall-Hologrammfelder ist sehr rechenintensiv und erforderte neue Rechenroutinen.“
Die Forschenden gehen davon aus, dass ihre Technologie für die Bildung von Zellkulturen und Geweben in 3D ein großer Fortschritt ist. Ultraschall hat den Vorteil, dass er schonend für Zellen ist und tief in das Gewebe eindringen kann. So kann die neue Methode verwendet werden, um Zellen ohne Schaden auch aus der Ferne zu manipulieren.