Wirkstoff verhindert mRNA-Abbau

Ein kürzlich entdeckter Hemmstoff zeigt neue Wege für die Entwicklung mRNA-basierter Medikamente
 

16. Oktober 2024

mRNA-basierte Therapeutika und Impfstoffe sind die neue Hoffnung im Kampf gegen unheilbare Krankheiten. Eine gängige Strategie bei der Entwicklung von Arzneimitteln auf der Grundlage von Boten-RNA (mRNA) ist die Zerstörung krankheitsverursachender mRNA. Das Team um Peter 't Hart, Gruppenleiter am Chemical Genomics Centre des Max-Planck-Instituts für molekulare Physiologie, hat den ersten Wirkstoff entwickelt, der die Deadenylierung von mRNA hemmt und so deren Abbau verhindert. Diese Studie bietet einen vielversprechenden Ausgangspunkt für die Entwicklung mRNA-basierter Therapeutika zu erhalten.

Boten-RNA transportiert die wertvollste zelluläre Information vom Zellkern ins Zytoplasma - den chemischen Bauplan zur Herstellung von Proteinen. Sobald die mRNA jedoch ihre Botschaft an die proteinproduzierenden Fabriken im Zytoplasma übermittelt hat, wird sie nicht mehr benötigt und durch Enzyme abgebaut.

Je nachdem wie lange die mRNA im Zytoplasma verbleibt, wird mehr oder weniger von einem Protein produziert - sei es gesundheitsfördernd oder krankheitsverursachend. Die Regulierung des mRNA-Levels ist deshalb eine der vielversprechendsten Strategien auf dem aufstrebenden Gebiet der RNA-basierten Therapeutika.

Schutz vor Abbau

Das Team um Peter 't Hart hat nun eine neue Strategie zur Verlängerung der mRNA-Lebensdauer entwickelt, mit der die mRNA vor ihrem Abbau geschützt werden soll. Interessanterweise ist mRNA von Natur aus nicht besonders stabil und würde ohne molekulare Schutzkappen an den beiden mRNA-Enden vorzeitig abgebaut werden. An ihrem sogenannten 3'-Ende ist die mRNA mit einem Polyadenin-Schwanz mit einer durchschnittlichen Länge von 200 Nukleotiden ausgestattet. Aber auch dieser Schutz hält nicht lange an: In einem aktiven Prozess, der sogenannten Deadenylierung, wird ein Adenin nach dem anderen von der mRNA entfernt und damit ihre Stabilität reduziert. Das führt dazu, dass nach nur sieben Stunden Verweilzeit im Zytoplasma bereits die Hälfte der mRNA abgebaut ist.

Eingeleitet wird dieser Prozess durch die Rekrutierung der Ziel-mRNA mit Hilfe von RNA-bindenden Proteinen an den Proteinkomplex CCR4-NOT. Und genau hier setzt die neue Strategie der Forschenden an. Basierend auf der Struktur eines mRNA-bindenden Proteins haben sie ein großes Peptid entwickelt, das die Interaktion des CCR4-NOT-Komplexes mit der Ziel-mRNA blockieren kann. Große Peptide können jedoch nur schwerlich zelluläre Barrieren überwinden, was sie aber tun müssen, wenn sie als Arzneimittel eingesetzt werden sollen. Die Forschenden haben jedoch herausgefunden, wie der Hemmstoff an sein Ziel bindet, und konnten so die Bioverfügbarkeit des Peptids mit weiteren chemischen Modifikationen verbessern.

 

Stabilisierung gesundheitsfördernder Proteine

Die Forschenden konnten ihre Arbeit sogar noch einen Schritt weiterführen und die Wirkung ihrer Strategie in lebenden Zellen nachweisen. So stabilisierte die Zugabe des Peptids die Polyadenin-Schwänze von zwei potenziell gesundheitsfördernden Proteinen: einem Tumorsuppressor, der eine positive Rolle in Krebserkrankungen spielen könnte, und einem Kernrezeptor, dessen erhöhte Level bei der Behandlung verschiedener altersbedingter Krankheiten helfen könnten.

„Die Stabilität fast aller mRNAs wird durch die Deadenylierung reguliert. Das Konzept, die Deadenylierung gesundheitsfördernder mRNAs zu verhindern und sie dadurch zu stabilisieren, ist jedoch neu. Basierend auf dieser Strategie könnten neue Medikamente zur Behandlung von Krankheiten entwickelt werden, die mit bisher bekannten therapeutischen Ansätzen nicht bekämpft werden können“, sagt 't Hart. Derzeit arbeitet seine Gruppe an weiteren Hemmstoffen gegen andere Komponenten der Deadenylierungsmaschinerie.

Weitere interessante Beiträge

Zur Redakteursansicht