Warum alternde Eizellen DNA-Schäden schlechter reparieren können
Eizellen brauchen Durchhaltevermögen: Bereits vor der Geburt werden sie im Körper einer Frau angelegt und müssen sich dann über Jahrzehnte bereithalten, um möglicherweise eines Tages befruchtet zu werden. Doch mit zunehmendem Alter häufen sich mehr DNA-Schäden in Eizellen an. Bislang war unklar, warum die zelleigenen Reparaturmechanismen diese Schäden nicht beseitigen. Forschende um Melina Schuh und Ninadini Sharma vom Max-Planck-Institut für Multidisziplinäre Naturwissenschaften haben jetzt in Versuchen an Mäusen gezeigt, dass ältere Eizellen ihre DNA weniger effizient reparieren als junge Eizellen und dass die Reparatur mit zunehmendem Alter fehleranfälliger wird.

Menschliche Körperzellen leben – je nach Zelltyp und -funktion – unterschiedlich lange. Hautzellen erneuern sich alle zwei bis vier Wochen. Leberzellen überdauern bis zu 500 Tage. Eizellen sind besonders langlebig: Schon vor der Geburt sind sie im weiblichen Körper angelegt und erneuern sich nicht. Eine 30-jährige Frau hat also Eizellen, die etwa so alt sind wie sie selbst.
Die Fähigkeit der Eizelle, Schäden in ihrer DNA zu reparieren, ist entscheidend, damit sie lange funktionsfähig bleibt und nicht abstirbt. Dafür haben Eizellen eine komplexe Reparaturmaschinerie mit verschiedenen Reparaturwegen entwickelt: Spezielle Proteine erkennen Veränderungen in der DNA auf und reparieren sie. Diese Maschinerie ist auch für die Reparatur von DNA-Schäden verantwortlich, die im Sperma des Vaters und im sich entwickelnden Embryo auftreten. Trotz des Vorhandenseins mehrerer DNA-Reparaturmechanismen häufen sich nicht reparierte DNA-Schäden in alternden Eizellen an. Bisher war unklar, warum dies geschieht.
Reparatur ineffizienter und fehleranfälliger
Ein Forschungsteam um Melina Schuh, Leiterin der Abteilung Meiose am MPI für Multidisziplinäre Naturwissenschaften hat jetzt junge und alternde Eizellen hinsichtlich ihrer DNA-Schäden und DNA-Reparaturmaschinerie miteinander verglichen. Mithilfe von hochauflösender Fluoreszenzmikroskopie ermittelte das Team die Menge an DNA-Schäden in unterschiedlich alten Eizellen von Mäusen, kartierte wichtige Reparaturproteine im Zellkern und analysierte, wie sich ihre Aktivität und ihr Zusammenspiel mit dem Alter verändern. „Die Reparatur in älteren Eizellen ist ineffizienter. Sie verläuft nicht nur langsamer, sondern teilweise auch unvollständig“, sagt Schuh. DNA-Schäden häufen sich so in der Zelle an.
Blick ins Innere von Eizellen
Reparatur-Netzwerk im Wandel
Um die Reparaturmaschinerie von Eizellen besser zu verstehen, erstellte das Forschungsteam eine „Karte“ der wichtigsten Reparaturproteine im Zellkern der Eizelle. Die Karte zeigte, dass sich DNA-Reparaturproteine in bestimmten Bereichen des Zellkerns befinden. „Diese Bereiche sind miteinander vernetzt oder liegen eng beieinander – ein Hinweis auf eine koordinierte Anordnung und Aktivität“, erklärt Ninadini Sharma, ehemalige Doktorandin in Schuhs Abteilung und Erstautorin der im Fachmagazin Current Biology veröffentlichten Studie.
Aber: „Die Bereiche und ihre Aktivität verändern sich stark mit dem Alter, zum Beispiel wie häufig Reparaturproteine in welchen Bereichen zu finden sind und wie sie auf DNA-Schäden reagieren“, ergänzt Sharma. Fehleranfällige Reparaturwege werden häufiger genutzt, während fehlerfreie Wege an Effizienz verlieren.
Cohesin-Verlust weiterer Faktor

Neben diesen Veränderungen identifizierten die Forschenden einen weiteren Grund für die zunehmenden Schäden in gealterten Eizellen: Die Menge des Proteins Cohesin nimmt mit zunehmendem Alter der Mutter ab. Cohesin hält Schwesterchromosomen zusammen, bis sie bereit sind, sich während der Zellteilung zu trennen. Fehlendes Cohesin führt daher zu Fehlern bei der Chromosomentrennung. Gleichzeitig ist das Protein für die DNA-Reparatur unerlässlich: Wenn beispielsweise ein DNA-Strang gebrochen ist, sorgt es dafür, dass der beschädigte Teil mithilfe eines intakten DNA-Strangs als Vorlage repariert werden kann.
Wissenschaftlerinnen und Wissenschaftler fanden heraus, dass allein das Fehlen von Cohesin zu mehr DNA-Schäden in Eizellen führt, und zwar nicht nur bei alternden Zellen. „Interessanterweise zeigten junge Eizellen ohne Cohesin teilweise ähnliche Proteinveränderungen und DNA-Schäden wie ältere Eizellen“, berichtet Schuh. „Offenbar befeuert nicht nur die langsamere, fehleranfälligere Reparaturmaschinerie, sondern auch der Cohesin-Rückgang im Alter das Absterben der Eizellen.“