18 erdgroße Planeten auf einen Schlag
Forscher finden mit einer neuen Methode kleine Himmelskörper, die bisherige Suchkampagnen übersehen haben
Wissenschaftler des Max-Planck-Instituts für Sonnensystemforschung, der Georg-August-Universität Göttingen und der Sternwarte Sonneberg haben 18 erdgroße Exoplaneten entdeckt. Alle diese fremden Welten haben eine Gemeinsamkeit: Sie sind so klein, dass bisherige Suchkampagnen sie übersehen hatten. Einer der neuen Exoplaneten zählt zu den kleinsten bisher bekannten, ein weiterer könnte lebensfreundliche Bedingungen aufweisen. Die Forscher werteten einen Teil der Daten des NASA-Weltraumteleskops Kepler mit einer von ihnen entwickelten, empfindlicheren Methode erneut aus. Im gesamten Datenschatz der Kepler-Mission sollten sich auf diese Weise noch mehr als 100 zusätzliche Exoplaneten ausfindig machen lassen.
Die Astronomen kennen bisher gut 4000 Planeten, die um Sterne außerhalb unseres Sonnensystems kreisen. Von diesen sogenannten Exoplaneten sind etwa 96 Prozent deutlich größer als unsere Erde, die meisten davon eher vergleichbar mit den Abmessungen der Gasriesen Neptun oder Jupiter in unserem Sonnensystem. Allerdings dürfte dieser Prozentsatz nicht die wirklichen Verhältnisse im Weltall widerspiegeln, denn große Planeten lassen sich deutlich leichter aufspüren als kleine. Doch gerade die kleinen Welten faszinieren, wecken sie doch die Hoffnung, irgendwo im All eine „zweite Erde“ zu finden.
Auch die 18 neu entdeckten Welten fallen in die Kategorie erdgroßer Planeten. Der Radius der kleinsten misst nur 69 Prozent des Erdradius; der größte Himmelskörper übertrifft die Erde um kaum mehr als das Zweifache. Und es gibt eine weitere Gemeinsamkeit: Alle 18 Planeten ließen sich bisher in den Daten des US-amerikanischen Weltraumteleskops Kepler nicht ausfindig machen. Gängige Suchalgorithmen waren dafür nicht empfindlich genug.
Üblicherweise nutzen Wissenschaftler für die Fahndung nach fernen Welten die Transitmethode, mit der sie Sterne gezielt nach periodisch wiederkehrenden Helligkeitsabfällen durchforsten. Jedes Mal, wenn ein Exoplanet auf seiner Umlaufbahn von der Erde aus gesehen vor seinem Stern vorüberzieht, verdunkelt er ihn leicht. Der Stern erscheint dem Betrachter in dieser Zeit – typischerweise für ein paar Stunden – weniger hell.
„Bisherige Suchalgorithmen versuchen, sprunghafte Helligkeitsabfälle zu identifizieren“, sagt René Heller vom Max-Planck-Institut für Sonnensystemforschung, Erstautor der aktuellen Studien. Aber in Wirklichkeit erscheinen Sterne am Rand etwas dunkler als in der Mitte. Wenn ein Planet vor einem Stern entlang zieht, blockiert er anfangs weniger Licht. „Erst zur Mitte des Transits erscheint der Stern am dunkelsten. Danach wird er wieder graduell heller.“
Große Planeten verdunkeln ihren Stern so stark, dass dieser feine Unterschied bei ihrer Entdeckung kaum eine Rolle spielt. Kleine Planeten jedoch stellen die Forscher vor immense Herausforderungen. Der Helligkeitsabfall ist oftmals so gering, dass er in den natürlichen Helligkeitsschwankungen des Sterns und im Rauschen des Messinstrumentes kaum auffällt. Das deutsche Team um René Heller konnte nun zeigen, dass sich die Empfindlichkeit der Transitmethode entscheidend verbessern lässt, wenn ein realistischerer Helligkeitsverlauf angenommen wird.
Als Prüfstein dienten Daten des NASA-Weltraumobservatoriums Kepler. In der ersten Missionsphase von 2009 bis 2013 zeichnete das Teleskop den Helligkeitsverlauf von mehr als 100.000 Sternen auf. Auf diese Weise wurden mehr als 2300 Planeten entdeckt. Nach einem technischen Defekt ließ sich das Teleskop nur noch eingeschränkt nutzen, richtete seinen Blick dennoch bis zum Missionsende 2018 auf mehr als 100.000 weitere Sterne.
Um das Potenzial ihres neuen Algorithmus zu testen, wandten sich die Forscher in einem ersten Schritt den überschaubareren Daten der zweiten Missionsphase zu. Speziell untersuchten sie alle 517 Sterne erneut, von denen bereits bekannt war, dass sie mindestens einen planetaren Begleiter aufweisen.
Neben den bereits dokumentierten Planeten stießen die Wissenschaftler auf 18 weitere, die bisher übersehen worden waren. „In den meisten der von uns untersuchten Planetensystemen sind die jetzt gefundenen Planeten die kleinsten“, sagt Co-Autor Kai Rodenbeck von der Universität Göttingen und vom Max-Planck-Institut. Zudem kreisen sie fast immer weiter innen um ihren Stern als ihre schon länger bekannten Weggefährten. Auf den Oberflächen fast aller dieser neuen Planeten herrschen deshalb Temperaturen von weit über 100 Grad Celsius; bei einigen sind es sogar bis zu 1000 Grad Celsius.
Nur einer der Körper bildet eine Ausnahme: Er kreist innerhalb der sogenannten habitablen Zone um einen roten Zwergstern. In diesem günstigen Abstand zu seiner Muttersonne bietet dieser Planet eventuell Bedingungen, unter denen flüssiges Wasser auf seiner Oberfläche vorkommen könnte – eine der Grundbedingungen für Leben.
„Unser neuer Algorithmus trägt dazu bei, ein realistischeres Bild von der Exoplaneten-Population im Weltall zu gewinnen“, sagt Michael Hippke von der Sternwarte Sonneberg. „Vor allem für die Suche nach erdähnlichen Planeten bedeutet unsere neue Methode einen maßgeblichen Fortschritt.“
Natürlich können die Forscher nicht ausschließen, dass auch ihre Methode für einzelne Planeten blind ist. Besonders problematisch sind etwa kleine Planeten, die in beträchtlichem Abstand um ihren Stern kreisen. Sie benötigen für einen Umlauf länger als solche Planeten, die auf engen Bahnen dahinziehen – und verdunkeln den Stern somit in größeren Zeitabständen. Ihr ohnehin schwaches Signal ist so noch schwieriger auszumachen.
Die neue Methode von Heller und seinen Kollegen eröffnet faszinierende Möglichkeiten, denn neben den 517 jetzt nachuntersuchten Sternen bietet die Kepler-Mission noch Datensätze von hunderttausenden weiteren. Die Forscher gehen davon aus, dass sie mit ihrer Methode in den Daten mehr als 100 weitere erdgroße Welten finden können. „Auch für die künftige Plato-Mission der europäischen Agentur ESA ist diese neue Methode wertvoll“, sagt Laurent Gizon, Geschäftsführender Direktor des Max-Planck-Instituts für Sonnensystemforschung. Plato soll im Jahr 2026 ins All starten und dann viele Exoplaneten-Systeme um sonnenähnliche Sterne finden und näher charakterisieren.
BK / HOR