Nervenzellen rechnen mit Hilfe von Erwartungen
Das Fliegenhirn berücksichtigt typische Umgebungseigenschaften bei der Berechnung von Bewegungen
Unsere visuelle Umwelt ist unglaublich komplex. Schon auf kleinstem Raum finden sich unzählige Farben, Strukturen und Kontraste. Trotzdem sind wir in der Lage, Objekte und Bewegungen zielsicher zu erkennen. Doch selbst das Fruchtfliegenhirn, das nur einen Bruchteil unserer Nervenzellen besitzt, schafft diese Unterscheidungen. Forscher am Max-Planck-Institut für Neurobiologie in Martinsried haben nun Hinweise darauf gefunden, dass sich der visuelle Bewegungssinn der Fruchtfliege im Laufe von Jahrmillionen optimal an die Eigenschaften der Umwelt angepasst hat. Das ungleiche Verhältnis zwischen hellen und dunklen Bereichen in der Natur spiegelt sich in einer ähnlich asymmetrischen Verarbeitung im Fliegenhirn wider.
Ohne dass wir uns dessen bewusst sind, löst unser Sehsystem in jeder Sekunde ungemein schwierige Aufgaben. Um beispielsweise nach einem Stift zu greifen, muss dessen Form und Textur rasch und präzise von dutzenden anderen, zum Teil sehr ähnlichen Objekten in der Umgebung unterschieden werden. Das funktioniert unter verschiedensten Lichtbedingungen und auch vor fast beliebigen Hintergründen. Um die Verarbeitung zu erleichtern, bezieht das Sehsystem Erwartungen an typische Eigenschaften der Umgebung in seine Berechnungen mit ein. Wie diese Erwartungen in die Nervenzellberechnung einfließen, untersucht Alexander Borst und sein Team am Max-Planck-Institut für Neurobiologie an der Fruchtfliege Drosophila.
Kurskorrektur in virtueller Umgebung
Für ihre Untersuchungen nutzen die Forscher ein angeborenes Verhalten der Fliegen. Mit Hilfe der sogenannten optomotorischen Reaktion können die Tiere stabil auf Kurs bleiben: Wird eine Fliege zum Beispiel durch eine Windböe nach links von ihrem Kurs abgebracht, rotiert aus ihrer Sicht die gesamte Welt nach rechts. Um wieder auf Kurs zu kommen, dreht sich das Tier daher zuverlässig in dieselbe Richtung wie die wahrgenommene Bildbewegung, in diesem Fall also nach rechts. Um die Grundlagen dieser Kurskorrektur zu untersuchen, haben die Forscher eine virtuelle Umgebung für die Tiere gebaut. Drei Monitore gaukeln der Fliege vor, dass sie durch verschiedene natürliche Umgebungen navigiert, während Sensoren ihre Bewegungen auf einem luftgepolsterten Styropor-Ball verfolgen.
“Für die Panorama-Bilder, die wir für diese Experimente benutzt haben, bin ich mit meinem Smartphone tagelang durch die Wälder um das Institut gekrochen”, berichtet Aljoscha Leonhardt, einer der Erstautoren der Studie. Hin und wieder simulierten die Forscher dann eine virtuelle Böe — die Umgebung auf den Monitoren dreht sich kurzzeitig nach links oder rechts. Wie in der Natur gleicht Drosophila diesen optischen Drift gekonnt aus: Im Bruchteil einer Sekunde läuft das Insekt wieder gerade durch die virtuelle Welt.
Im nächsten Schritt unterdrückten die Forscher mithilfe eines genetischen Tricks die Aktivität derjenigen Nervenzellen, welche im Fliegengehirn die Bewegungsrichtung berechnen und diese letztendlich in eine Drehung umsetzen. Ähnlich wie bei Wirbeltieren passiert dies im optischen System der Fliege in zwei parallelen Kanälen: einmal für Helligkeits-Zunahmen (ON-Kanal) und einmal für Helligkeits-Abnahmen (OFF-Kanal). Ersteres wird in sogenannten T4-Zellen erledigt, letzteres in T5-Zellen. Wurden beide Nervenzelltypen ausgeschaltet, konnten die Tiere die Bewegungen ihrer Umwelt nicht mehr sehen und ihren Kurs auch nicht mehr korrigieren. Wurde jedoch nur einer dieser Kanäle ausgeschaltet, glichen die Fliegen zur Überraschung der Neurobiologen die virtuelle Böe weiterhin schnell und effizient aus. Jeder der beiden Kanäle scheint daher optimal auf Umweltveränderungen zu reagieren.
Parallel mit Unterschieden
Die weiteren Untersuchungen zeigten jedoch deutliche Unterschiede in den beiden Kanälen. Während die T4-Zellen des ON-Kanals zum Beispiel stark auf sich langsam bewegende helle Kanten reagierten, wurden die T5-Zellen des OFF-Kanals vor allem bei schnellen, dunklen Kanten aktiv. Um zu überprüfen, ob es sich bei dieser Asymmetrie um eine Anpassung an die Natur handelt, simulierten die Forscher das Netzwerk am Computer. Sie trainierten virtuelle T4- und T5-Zellen darauf, möglichst gut die Geschwindigkeit von Bewegungen natürlicher Bilder zu schätzen.
Das Ergebnis zeigte eine ganz ähnliche Asymmetrie wie die vorangegangenen physiologischen Untersuchungen. “Wir nehmen an, dass sich die funktionellen Unterschiede zwischen T4- und T5-Zellen als Anpassung an die unterschiedliche Verteilung von Hell und Dunkel in der natürlichen visuellen Umgebung entwickelt haben”, erklärt Georg Ammer, der zweite Erstautor der Studie. Das Einbeziehen solcher Erwartungen an die natürlichen Umweltbedingungen macht die Verarbeitung robuster und effizienter. Da Menschen und Fliegen in visuell ähnlichen Umgebungen leben ist es denkbar, dass auch diese Erkenntnis über die visuelle Verarbeitung im Fliegenhirn eine Parallele im menschlichen Gehirn findet.
AL/GA/SM/HR