Weltweit verbreitete Symbiose zwischen Mikroorganismen
Bremer Forschende haben an Mitochondrien erinnernde Symbionten entdeckt und deren Stoffwechselwege aufgeklärt
Manche Wimpertierchen beherbergen einen ungewöhnlichen Partner im Innern: ein Bakterium, das sie mit Energie versorgt. Die Symbiosepartner erinnern damit an Mitochondrien. Allerdings gewinnen die Endosymbionten ihre Energie nicht aus Sauerstoff, sondern aus Nitrat. Forschende haben nun entdeckt, dass die Symbiose weltweit in unterschiedlichsten Lebensräumen vorkommt, zum Beispiel auch im Grund- und sogar im Abwasser. Vier neu entdeckte Arten können nicht nur Nitrat, sondern auch Sauerstoff verarbeiten.
Im Jahr 2021 berichteten Forschende des Max-Planck-Instituts für marine Mikrobiologie in Bremen über eine erstaunliche neue Art von Symbiose: Sie hatten ein einzigartiges Bakterium entdeckt, das in einem einzelligen Wirt, einem Wimpertierchen, lebt und ihn mit Energie versorgt. Die Rolle des Symbionten erinnert damit stark an die von Mitochondrien, mit dem entscheidenden Unterschied, dass der Endosymbiont seine Energie nicht aus Sauerstoff, sondern aus Nitrat gewinnt.
Die Bremer Forschenden wollten nun mehr darüber herausfinden, wie verbreitet und vielfältig dieser besondere Symbiont in der Umwelt ist. „Zuerst haben wir den Symbionten in einem See entdeckt. Nun haben wir uns gefragt, wie häufig diese Organismen in der Natur vorkommen“, sagt Jana Milucka vom Max-Planck-Institut für marine Mikrobiologie. „Sind sie extrem selten und deshalb so lange unentdeckt geblieben? Oder gibt es sie auch anderswo, und wenn ja, wie sieht ihr Stoffwechsel aus?“
Weltweit verbreitet
Zunächst durchforsteten die Forschenden große öffentliche Sequenzierdatenbanken, die Unmengen genetischer Daten aus allen möglichen Umweltproben enthalten, nach molekularen Spuren des Symbionten. Und tatsächlich wurden sie in rund 1000 verschiedenen Datensätzen fündig. „Wir waren überrascht, wie weit sie verbreitet sind. Wir haben sie auf allen bewohnten Kontinenten gefunden“, erklärt Milucka. „Außerdem haben wir so gemerkt, dass sie nicht nur in Seen und anderen Süßgewässern, sondern auch im Grundwasser und sogar im Abwasser leben können.“
In den Datensätzen entdeckten die Forschenden nicht nur den ursprünglichen Symbionten, sondern auch einige weitere nahe Verwandte. „Am Ende konnten wir vier neue Arten identifizieren, von denen zwei sogar eine neue Gattung bilden. Da diese neue Gattung von Symbionten wahrscheinlich eine ähnliche Rolle spielt wie der ursprünglich entdeckte Azoamicus (der Name bedeutet „Stickstofffreund“), haben wir die neue Gattung Azosocius („Stickstoffpartner“) genannt“, erklärt Daan Speth, der Erstautor der Studie. „Wie es der Zufall will, wurde eine der neuen Azosocius-Arten unweit von Bremen in einer Grundwasserprobe im Hainich, einem Höhenzug in Thüringen, gefunden.“
Nun wollten die Forschenden das Leben der neuen Arten genauer untersuchen. Dank der Zusammenarbeit mit Kirsten Küsel und Will Overholt von der Friedrich-Schiller-Universität Jena, die die Proben aus dem Hainich ursprünglich gesammelt hatten, erhielten sie Zugang zu den Probenahmestellen und zu Metatranskriptomdaten, also Daten, die die Genexpression in einer Probe beschreiben und Rückschlüsse auf die mikrobielle Aktivität zulassen. „Dabei erlebten wir eine weitere Überraschung: Diese Atmungssymbionten beherrschen ganz neue Tricks“, sagt Speth. Im Gegensatz zu den ursprünglichen Symbiontenarten, die nur anaerob (also denitrifizierend) atmen können, besitzen alle neuen Symbiontenarten eine so genannte terminale Oxidase – ein Enzym, mit dem sie neben Stickstoff auch Sauerstoff veratmen können. „Das könnte erklären, warum wir diese Symbionten auch in ganz oder teilweise sauerstoffhaltigen Umgebungen finden".
Evolutionäre und ökologische Bedeutung
Mit den jetzt vorgestellten Ergebnissen beantworten die Forschenden offene Fragen zur Verbreitung des Symbionten. „Dank der Entdeckung der neuen Art können wir nun auch anfangen, mehr über ihre Evolution nachzudenken“, blickt Milucka in die Zukunft. „Wir können hoffentlich besser verstehen, wie solche nützlichen Symbiosen entstehen und wie sie sich im Laufe der Zeit verändern.“ Darüber hinaus hat ihre Forschung auch eine ökologische Bedeutung: Durch die Denitrifikation beeinflussen diese Symbiosen den Stickstoffkreislauf in ihrem Lebensraum und können Nährstoffe, wie Stickoxide, abbauen und Treibhausgase wie Lachgas produzieren“, ergänzt Speth.
Und dann ist da noch die pure Begeisterung für die Wunderwelt der Mikroben. „Diese Lebewesen sind ein Wunderwerk der Natur“, schwärmt Milucka. „Einzeller zeigen so erstaunliche Stoffwechselinnovationen, oft auch, weil sie sich so gerne mit zellkernlosen Organismen verbinden. Wenn es darum geht, die Evolution der Eukaryoten zu verstehen, sind diese Organismen ein wichtiger Teil des Puzzles.“