Widerstand unter Druck
Ein unkonventioneller Supraleiter leitet Strom bei höheren Temperaturen verlustfrei, wenn er gestaucht oder gedehnt wird
Wollen Physiker die unbekannte Welt der exotischen Supraleiter erkunden, brauchen sie bildhaft gesprochen Fahrzeuge, die sie in die unerforschten Regionen bringen. Supraleiter geben, genau wie andere Materialien auch, Wichtiges über ihre Physik preis, indem man von außen auf sie einwirkt und prüft, wie sie reagieren. So lassen sich beispielsweise die Temperatur variieren oder der Druck. Verändert sich dadurch die Sprungtemperatur, also jene Temperatur, die die Grenze zwischen dem normal leitenden und dem supraleitenden Zustand markiert? Und wenn ja, wie? Der unkonventionelle Supraleiter Strontium-Ruthenat hielt für die Forscher des Max-Panck-Instituts für Chemische Physik fester Stoffe bei einer solchen Prüfung Überraschungen bereit.
Das Erkundungsfahrzeug, das die Dresdener Forscher um Clifford W. Hicks entwickelt haben, stauchte und dehnte eine Probe aus Strontium-Ruthenat ein Stückchen. Dadurch rücken die Atome des Materials zusammen, oder sie entfernen sich voneinander. Dies wiederum verändert die Wechselwirkung zwischen den Elektronen im Supraleiter, welche entscheidend für die Entstehung der Supraleitung ist. Bei allen Supraleitern verbinden sich jeweils zwei Elektronen miteinander zu einem Paar. Diese so genannten Cooper-Paare bewegen sich auf andere Weise als einzelne Elektronen durch das Material, was letztlich zum Verschwinden des elektrischen Widerstandes führt.
Unkonventionelle Supraleiter reagieren auf Druck anders als konventionelle
Zwischen den Cooper-Paaren verschiedener Supraleitertypen gibt es wesentliche Unterschiede. Bei herkömmlichen Supraleitern zeigen die Cooper-Paare keinen Magnetismus, da sich die die magnetischen Momente der beiden Elektronen einander entgegengesetzt ausrichten. Bei Strontium-Ruthenat hingegen richten sich die magnetischen Momente der Elektronen parallel aus. Sie sind wie zwei Kompassnadeln, die beide in die gleiche Richtung weisen. Da sich die magnetischen Momente dadurch verstärken statt zu neutralisieren, bleiben die Cooper-Paare magnetisch und der Supraleiter reagiert anders auf äußere Magnetfelder als ein herkömmlicher.
Die Andersartigkeit drückt sich durch eine charakteristische Reaktion auf äußere Einflüsse aus. Theoretische Physiker erwarteten, dass der unkonventionelle Supraleiter stärker auf äußeren Druck reagieren sollte als konventionelle Supraleiter. Um dies zu testen, entwickelten Forscher um Andrew P. Mackenzie, der vor kurzem von der schottischen University of St. Andrews an das Max-Planck-Institut für Chemische Physik fester Stoffe nach Dresden wechselte, eine Druckzelle. Diese haben die Physiker so konzipiert, dass sie im Kühlgerät, das die für die Supraleitung nötigen Temperaturen knapp über dem absoluten Nullpunkt (minus 273 Grad Celsius) bereitstellt, mit geringem experimentellen Aufwand präzise geregelt werden kann.
Der Probenhalter enthält drei so genannte Piezokristalle, die ihre Länge bei Anlegen einer elektrischen Spannung vergrößern. Zwei davon sind über einen U-förmigen Bügel mit der Probe verbunden, sodass der Bügel unter Zug gerät, wenn die Piezokristalle länger werden. Ein dritter Piezokristall ist direkt mit der Probe gekoppelt, sodass diese bei Anlegen der Spannung einen Druck erfährt. Die Vorrichtung erlaubte es den Forschern, den supraleitenden Kristall genau kontrolliert zu dehnen und zu stauchen. Da Kristalle entlang verschiedener Richtungen unterschiedliche physikalische Eigenschaften aufweisen können, ist es auch wichtig, dass mit der Druckkammer auch in bestimmten Kristallrichtungen Druck ausgeübt werden kann.
Bereits unter geringem Zug oder Druck steigt die Sprungtemperatur um 40 Prozent
Das überraschende Ergebnis der Dresdener Versuche: Die Sprungtemperatur stieg schon bei sehr kleinen Dehnungen und Stauchungen von wenigen Promille der Ausgangslänge um mehr als 40 Prozent, nämlich von rund 1,3 Kelvin auf über 1,9 Kelvin. Die Kelvinn-Temperaturskala beginnt am absoluten Nullpunkt; ein Kelvin entspricht minus 272,15 Grad Celsius. Der starke Anstieg der Sprungtemperatur nahm, entgegen der Erwartung, einen parabelförmigen Verlauf. Entlang einer anderen Kristallrichtung beobachteten die Forscher hingegen eine deutlich schwächere Änderung der Sprungtemperatur. Bei Zug stieg sie in dieser Kristallrichtung leicht, bei Druck nahm sie ab.
Die Dresdener Ergebnisse geben theoretischen Physikern nun Randbedingungen für die Erklärung der exotischen Supraleitung von Strontium-Ruthenat in die Hand. Auf deren Basis können sie bestimmte Modelle verwerfen oder favorisieren.
Auch dem Verständnis einer andere Form exotischer Supraleiter, der so genannten Hochtemperatur-Supraleiter, könnten sich Physiker auf diese Weise nähern. Hochtemperatur-Supraleiter verlieren ihren elektrischen Widerstand zwar bei deutlich höheren Temperaturen als Strontium-Ruthenat und andere Stoffe, aber immer noch weit unter dem Gefrierpunkt. Die Physiker um Mackenzie erwarten jedenfalls, dass ihre neu entwickelte Technik den Weg für viele neue Experimente frei macht.
CJM