Drei eherne Ringe in einer planetenbildenden Scheibe
Eine Struktur mit drei Ringen in der planetenbildenden Zone einer zirkumstellaren Scheibe, in der Metalle und Mineralien als Baumaterial für Planeten dienen
Ein Forscherteam, dem auch Astronominnen und Astronomen des Max-Planck-Instituts für Astronomie angehören, hat im Zentralbereich einer planetenbildenden Scheibe eines jungen Sterns eine Struktur mit drei Ringen entdeckt. Sie deutet an, dass sich zwischen den Ringen zwei Planeten mit Jupitermasse bilden. Weiterhin wird die Staubzusammensetzung offenbar durch reichlich feste Eisenkörner ergänzt. Folglich enthält die Scheibe Metalle und Mineralien, die denen der terrestrischen Planeten des Sonnensystems ähneln. Sie bietet somit einen Einblick in Bedingungen vergleichbar derer des frühen Sonnensystems vor mehr als vier Milliarden Jahren, als Gesteinsplaneten wie Merkur, Venus und die Erde entstanden.
Die Entstehungsgeschichte der Erde und des Sonnensystems fasziniert die Wissenschaft und die Öffentlichkeit gleichermaßen. Durch die Erforschung der heutigen Eigenschaften unseres Heimatplaneten und anderer Objekte im Sonnensystem haben Forscherinnen und Forscher eine umfassende Vorstellung von den Bedingungen entwickelt, unter denen sie sich aus einer Scheibe aus Staub und Gas entwickelt haben, die die junge Sonne vor etwa 4,5 Milliarden Jahren umgab.
Drei Ringe, die auf zwei Planeten hindeuten
Mit den atemberaubenden Fortschritten in der Erforschung der Stern- und Planetenentstehung, die sich mit weit entfernten Himmelsobjekten befasst, können wir nun die Bedingungen in der Umgebung junger Sterne untersuchen und sie mit denen vergleichen, die für das frühe Sonnensystem ermittelt wurden. Mit Hilfe des Very Large Telescope Interferometer (VLTI) der Europäischen Südsternwarte (Eso) hat ein internationales Forscherteam unter der Leitung von József Varga vom Konkoly-Observatorium in Budapest, Ungarn, genau das getan. Sie beobachteten die planetenbildende Scheibe des jungen Sterns HD 144432 in etwa 500 Lichtjahren Entfernung.
„Bei der Untersuchung der Staubverteilung in der innersten Region der Scheibe entdeckten wir zum ersten Mal eine komplexe Struktur, bei der sich der Staub in einer solchen Umgebung in drei konzentrischen Ringen anhäuft“, sagt Roy van Boekel. Er ist Wissenschaftler am Max-Planck-Institut für Astronomie in Heidelberg. „Diese Region entspricht der Zone, in der sich die Gesteinsplaneten im Sonnensystem gebildet haben“, fügt van Boekel hinzu. Im Vergleich zum Sonnensystem liegt der erste Ring um HD 144432 innerhalb der Umlaufbahn des Merkurs und der zweite in der Nähe der Marsbahn. Weiterhin befindet sich der dritte Ring ungefähr auf der Umlaufbahn des Jupiters.
Bisher haben Astronominnen und Astronomen solche Anordnungen vorrangig über größere Bereiche hinweg gefunden, die der Zone jenseits der Umlaufbahn des Saturn um die Sonne entsprechen. Ringsysteme in den Scheiben um junge Sterne deuten im Allgemeinen darauf hin, dass sich in den Lücken Planeten bilden, die auf ihrem Weg Staub und Gas aufnehmen. HD 144432 ist jedoch das erste Beispiel für ein solch komplexes Ringsystem nahe an seinem Wirtsstern. Es kommt in einer Zone mit einem hohen Staubanteil vor, dem Baustein von Gesteinsplaneten wie der Erde. Die Forschenden gehen davon aus, dass die Ringe auf das Vorhandensein von zwei Planeten hindeuten, die sich in den Lücken gebildet haben, und schätzen, dass ihre Masse in etwa der des Jupiters entspricht.
Die Bedingungen könnten dem frühen Sonnensystem ähnlich sein
Das Forschungsteam bestimmte die Staubzusammensetzung in der Scheibe bis zu einer Entfernung vom Zentralstern, die dem Abstand des Jupiters von der Sonne entspricht. Was sie dabei gefunden haben, ist den Forschenden, die die Erde und die Gesteinsplaneten im Sonnensystem untersuchen, sehr vertraut: verschiedene Silikate (Metall-Silizium-Sauerstoff-Verbindungen) und andere Mineralien, die in der Erdkruste und im Erdmantel vorkommen, sowie möglicherweise metallisches Eisen, wie es im Kern des Merkurs und der Erde vorhanden ist. Sollte sich dies bestätigen, wäre diese Studie die erste, die Eisen in einer planetenbildenden Scheibe entdeckt hat.
„Astronomen haben die Beobachtungen von staubigen Scheiben bisher mit einer Mischung aus Kohlenstoff- und Silikatstaub erklärt, Materialien, die wir fast überall im Universum sehen“, erläutert van Boekel. Aus chemischer Sicht ist jedoch eine Mischung aus Eisen und Silikat für die heißen, inneren Scheibenregionen plausibler. Und in der Tat liefert ein entsprechendes chemisches Modell, das József Varga auf die Daten angewandt hat, in diesem Fall bessere Ergebnisse.
Außerdem kann der in der Scheibe von HD 144432 beobachtete Staub am inneren Rand bis zu 1800 Kelvin (ca. 1500 Grad Celsius) heiß sein und weiter draußen bis zu moderaten 300 Kelvin (ca. 25 Grad Celsius). In den heißen Regionen in der Nähe des Sterns schmelzen Mineralien und Eisen und kondensieren erneut zu festen Verbindungen, oft als Kristalle. Die Kohlenstoffkörner wiederum würden die Hitze nicht überleben und stattdessen als Kohlenmonoxid- oder Kohlendioxidgas vorliegen. Dennoch könnte Kohlenstoff ein bedeutender Bestandteil der festen Partikel in der kalten äußeren Scheibe sein, die mit den Beobachtungen im Rahmen dieser Studie nicht aufgespürt werden können.
Solch eine Staubmischung - reich an Eisen und arm an Kohlenstoff - würde auch gut zu den Bedingungen im Sonnensystem passen. Merkur und die Erde sind eisenreiche Planeten, während die Erde relativ wenig Kohlenstoff enthält. „Wir denken, dass die Scheibe von HD 144432 dem frühen Sonnensystem sehr ähnlich sein könnte, das die heutigen Gesteinsplaneten mit viel Eisen versorgt hat“, sagt van Boekel. „Unsere Studie könnte ein weiteres Beispiel für die Vermutung sein, dass die Zusammensetzung unseres Sonnensystems typisch ist.“
Interferometrie löst winzige Details auf
Diese Ergebnisse waren nur mit außergewöhnlich hochauflösenden Beobachtungen möglich, wie sie das Very Large Telescope Interferometer liefert. Durch die Kombination der vier 8,2-Meter-Teleskope des Very Large Telescope am Paranal-Observatorium der Eso können sie Details so auflösen, als ob die Astronominnen und Astronomen ein Teleskop mit einem Hauptspiegel von 200 Metern Durchmesser einsetzen würden. Varga, van Boekel und ihre Mitarbeitenden sammelten Daten mit drei Instrumenten, um eine Wellenlängenabdeckung von 1,6 bis 13 Mikrometern zu erreichen, ein breiter Bereich infraroten Lichts.
Das Max-Planck-Institut für Astronomie lieferte wichtige technische Komponenten für zwei Instrumente, in denen das Licht der vier Teleskope des VLTI kombiniert wird, nämlich das Instrument Gravity und das Multi AperTure mid-Infrared SpectroScopic Experiment (Matisse). Eines der Hauptziele von Matisse ist es, die Zonen der Scheiben um junge Sterne zu erforschen, in denen sich Gesteinsplaneten entwickeln können.
Die Erstellung von Bildern mit einem Interferometer, wie wir sie von Einzelteleskopen gewohnt sind, ist jedoch komplex und zeitaufwendig. Eine effizientere Nutzung der kostbaren Beobachtungszeit zur Entschlüsselung der Objektstruktur besteht darin, die kargen Daten mit Modellen von möglichen Konfigurationen zu vergleichen. Im Fall der Scheibe von HD 144432 gibt eine Form aus drei Ringen die Daten am besten wieder.
Wie häufig sind strukturreiche, eisenhaltige, planetenbildende Scheiben?
Neben dem Sonnensystem scheint HD 144432 ein weiteres Beispiel für die Entstehung von Planeten in einer eisenreichen Umgebung zu sein. Die Astronominnen und Astronomen werden sich jedoch nicht darauf beschränken. „Wir haben noch ein paar vielversprechende Kandidaten für planetenbildende Scheiben, die darauf warten, dass das VLTI sie genauer unter die Lupe nimmt“, erklärt van Boekel. Mit den neuesten VLTI-Instrumenten werden sie schließlich deren detaillierte Struktur und chemische Zusammensetzung präzise ergründen. Letztendlich können die Forschenden vielleicht sogar klären, ob sich Planeten regelmäßig in eisenreichen Staubscheiben in der Nähe ihrer Muttersterne bilden.
MN