Blick in den kosmischen Kühlschrank
Astronomen beobachten seltenes Molekül innerhalb einer Geburtswolke von Sternen
Im All herrscht dünne Luft. Ganz leer ist der Raum aber nicht: So wabern zwischen den Sternen kalte Staub- und Gaswolken, die im Wesentlichen aus Wasserstoff bestehen. Darunter finden sich seltene Moleküle wie H2D+ und D2H+, gebaut aus dem Wasserstoffatom (H) und seinem schwereren Isotop Deuterium (D). Deuterium, dessen Kern aus einem Proton und einem Neutron besteht, kommt im Universum etwa 100.000-mal seltener vor als gewöhnlicher Wasserstoff mit nur einem Kernproton. Daher lassen sich solche Moleküle schwer aufspüren. Einem Team am Bonner Max-Planck-Institut für Radioastronomie unter der Leitung von Bérengère Parise ist dieses Kunststück gelungen: Mit dem APEX-Teleskop haben die Forscher die Verteilung von D2H+ in der Rho-Ophiuchi-Dunkelwolke, einem Sternentstehungsgebiet, kartiert. (Astronomy & Astrophysics, 16. Dezember 2010)
Sterne werden im Innern von dichten und extrem kalten Gas- und Staubwolken geboren. Die meisten ihrer Moleküle frieren daher auf der Oberfläche von Staubkörnern aus - ähnlich wie Wasserdampf an den Wänden von Kühlschränken kondensiert. Auf diese Weise verschwinden die meisten Moleküle aus dem Gas, was die Beobachtung von Molekülstrahlung erschwert. Gleichzeitig aber laufen zwischen den in der Gasphase verbleibenden Molekülen ganz besondere chemische Prozesse ab: So entstehen bei Temperaturen von ungefähr 10 Kelvin (etwa minus 260 Grad Celsius) viele leichte, deuteriumhaltigen Moleküle, insbesondere dreiatomige Sorten wie H2D+ und D2H+.
Diese Moleküle waren schon im vergangenen Jahrzehnt das Ziel einer Reihe astronomischer Suchprogramme. "Die Linienstrahlung dieser Moleküle hilft uns dabei, die extremen physikalischen Bedingungen zu verstehen, die in den Hüllen von gerade entstehenden Sternen vorherrschen", sagt Bérengère Parise, die Leiterin der Emmy-Noether-Forschungsgruppe am Max-Planck-Institut für Radioastronomie in Bonn. "Und wir erfahren dabei viel über Prozesse, die zur Geburt von Sternen und ihren Planetensystemen führen."
Allerdings senden die Moleküle eine extrem schwache Strahlung hoher Frequenz mit Wellenlängen unterhalb von einem Millimeter aus. Dieser sogenannte Submillimeterbereich lässt sich vom Erdboden allenfalls bei besten Wetterbedingungen erfassen. Gefordert sind daher leistungsfähige Teleskope an den weltweit bestmöglichen Standorten. Dabei erweist sich die Beobachtung von D2H+ noch ein ganzes Stück schwieriger als die von H2D+, da es bei einer höheren Frequenz strahlt. So verliefen die meisten Suchprogramme nach diesem Molekül bisher erfolglos - es gab lediglich eine frühere Beobachtung, jedoch mit unsicherer Frequenzkalibration.
Für ihre jüngsten Messungen nutzten die Forscher das APEX-Radioteleskop, das in 5100 Meter Höhe auf der Chajnantor-Ebene in der chilenischen Atacamawüste steht. Und sie verwendet einen besonderen Empfänger: "Unser CHAMP+ ist ein sehr leistungsfähiges Instrument", sagt Rolf Güsten, Leiter der Submillimetertechnologie-Gruppe am Max-Planck-Institut für Radioastronomie. "Damit können wir astronomische Signale an sieben verschiedenen Positionen am Himmel gleichzeitig aufzeichnen, und das auch noch bei zwei unterschiedlichen Frequenzen."
So waren die Wissenschaftler jetzt in der Lage, die Strahlung von D2H+ in Richtung eines kalten Molekülklumpens innerhalb der 400 Lichtjahre entfernten Rho-Ophiuchi-Dunkelwolke erstmals auf sieben Positionen gleichzeitig zu erfassen. Das wäre an einem Instrument mit nur einem einzigen Empfängerpixel nahezu unmöglich gewesen, da der Nachweis des schwachen Signals eine sehr lange Beobachtungszeit auf jeder Position erfordert hätte.
Neben dem endgültigen Nachweis von D2H+ gelang der Gruppe eine überraschende Entdeckung: Das Molekül wurde nicht nur im kältesten Bereich im Zentrum des Klumpens gefunden, sondern auch in unmittelbarer Nachbarschaft. Offenbar geht das Ausfrieren von Molekülen auf Staubkörnern in extrem effektiver Weise vonstatten. Damit fanden die Forscher einen weiteren Puzzlestein zum Verständnis der chemischen Vorgänge, die in den kosmischen Kreißsälen der Sterne ablaufen.
"Die zusätzliche Information über die räumliche Verteilung von D2H+ durch die CHAMP+-Beobachtungen eröffnet uns die Möglichkeit, die chemischen und physikalischen Prozesse in den frühen Phasen der Sternentstehung im Detail zu untersuchen", sagt Parise. Ihr Team will die Messungen in nächster Zeit fortsetzen.
*********************
Atacama Pathfinder Experiment (APEX)
Das Atacama Pathfinder Experiment (APEX) ist ein Radioteleskop für den Submillimeter-Wellenlängenbereich, das in Zusammenarbeit vom Max-Planck-Institut für Radioastronomie (MPIfR) zu 50 Prozent, dem Onsala Space Observatory (OSO) zu 23 Prozent und der Europäischen Südsternwarte (ESO) zu 27 Prozent betrieben wird. Es wurde konstruiert auf der Grundlage einer modifizierten ALMA-Prototyp-Antenne und steht in 5100 Meter Höhe auf der Chajnantor-Ebene in der chilenischen Atacamawüste. Gebaut wurde das Teleskop von VERTEX-Antennentechnik in Duisburg. Der Betrieb von APEX obliegt der Europäischen Südsternwarte.
Carbon Heterodyne Array (CHAMP+)
Das Carbon Heterodyne Array (CHAMP+) ist ein Zweifarben-Heterodyn-Array-Empfänger zur Spektroskopie in den atmosphärischen Fenstern um 450 und 350 Mikrometer (Tausendstel Millimeter), der vom Max-Planck-Institut für Radioastronomie in Zusammenarbeit mit dem niederländischen Institut für Weltraumforschung SRON und dem amerikanischen Jet Propulsion Laboratory (JPL) gebaut wurde. Das Instrument ist seit Sommer 2007 erfolgreich am APEX im Einsatz.
Emmy-Noether-Programm
Das Emmy-Noether-Programm der Deutschen Forschungsgemeinschaft (DFG) möchte jungen Nachwuchswissenschaftlerinnen und Nachwuchswissenschaftlern einen Weg zu früher wissenschaftlicher Selbständigkeit eröffnen. Promovierte Forscherinnen und Forscher erwerben durch eine in der Regel fünfjährige Förderung die Befähigung zum Hochschullehrer durch die Leitung einer eigenen Nachwuchsgruppe.